Experimental

The assay procedure used was essentially that given by Tauber⁹ since it was found that with fresh skimmed milk sharper end-points were obtained than with reconstituted skimmed milk, as recommended by Kunitz.¹⁰ To 90 ml. of fresh skimmed milk at 25° was added 10 ml. of a 0.5 M acetic acid-0.5 M sodium acetate buffer to give a solution of pH 4.8. A mixture of 1 ml. of inhibitor solution, 1 ml. of enzyme solution, containing 0.052 mg. of protein nitrogen per ml., and 5 ml. of buffered milk solution was gently shaken in a thermostat at 25° until clot formation was observed. The inhibitors were those prepared previously^{7,8} and the crystalline α -chymotrypsin was an Armour preparation of bovine origin.

(9) N. Tauber, "Chemistry and Technology of Euzymes," John Wiley and Sons, Inc., New York, N. Y., 1949, p. 136.
(10) M. Kunitz, J. Gen. Physiol., 18, 459 (1935).

Contribution 1540 from the

GATES AND CRELLIN LABORATORIES OF CHEMISTRY CALIFORNIA INSTITUTE OF TECHNOLOGY

PASADENA, CALIFORNIA RECEIVED MARCH 5, 1951

Peculiar Kinetics of Color Formation in Glycerol-Catechol Condensation

BY STEWART C. HARVEY' AND VELMA HIGBY

During a study of the kinetics of color development for a microcolorimetric analysis of glycerol^{2a} based on the Hovey and Hodgins reaction^{2b} a very peculiar stepwise phenomenon was observed. Although this anomaly has been investigated only superficially, it is felt that a note concerning its behavior is warranted. in the bath. For the duration of the heating period the temperature was kept at $145 \pm 1^{\circ}$. At various intervals tubes were withdrawn, the reaction arrested by immersion in ice-water, and the color intensity read in a Klett-Summerson photoelectric colorimeter or the absorption spectrum determined with a Beckman spectrophotometer.

Results and Discussion

The stepwise character of chromogen formation is shown in Table I in which the results of 10 of 20 such experiments are recorded. Plateau values are shown in bold print and brackets. Over a 10 minute (or more) range two or more steps were observed, each indicating complete cessation of the series of reactions leading to condensation. Patterns determined from different experiments were extremely variable but of similar general character. However, simultaneously withdrawn duplicate and triplicate samples of the same stock generally varied less than 3% in color intensity; furthermore, each plateau value shown represents a separate sample. Therefore, the factors determining the pattern of color development are not randomly distributed among samples of the same solution. In addition, a series of standard glycerol solutions showed color intensities in direct proportion to the concentration,^{2a} which suggests that the shape of the curve is also independent of the glycerol concentration. Thus the treppe cannot be explained only as a chain reaction or autocatalysis; the periodic behavior was seemingly determined in some way by fluctuations in the activity of components other than glyc-

TABLE I

STEPWISE PHENOMENA IN THE RATE OF COLOR DEVELOPMENT

t, time of heating in minutes; c, colorimeter reading with a Klett-Summerson photoelectric colorimeter using a filter o^I maximum transmission at 540 m μ .

		0		3				Experiment			nt		7	0		0		10	
4	1	,	2 ¢	,	<i>з</i> с	,	4 c	,	ē c	4	° c	,	1	,	8 c	, 9	с	ť	c
•	L	•	L.	•	c	•	C C	•		•		•	L.	•	c	•		•	
1	10	2	26	2	27	10	168	10	(179	10	∫153	10	142	10	137	11	151	11	∫ 174
2	21	4	61	4	80	11	172	12	{ 179	12	153	13	156	13	179	$11^{1/2}$	152	$11^{1/2}$	171
3	41	6	99	6	126	12	185	14	179	16	206	16	193	16	200	12	151	12	185
4	54	8	132	8	180	13	{ 186	16	208	18	230	19	194	19	248	121/2	151	121/2	185
5	82	10	132	10	180	14	186	18	210	22	230	22	228	22	248	13	170	13	194
6	94	12	184	12	130	15	206	20	218	24	262	25	243	25	263	131/2	170	131/2	194
7	119	14	197	14	206	16	229	22	233	28	302	28	277	28	299	14	170	14	194
8	152	16	229	16	222	17	237	24	253	30	302	31	277	31	304	141/2	183	141/2	194
ø	154	18	247	18	232	18	242	26	262	34	350	34	315	34	340	15	183	15	194
10	153		264	20	250	19	(253	28	289	36	350	37	350	37	345	151/2	202	151/2	214
	(100		201	~0	200	20	254	30	305	40	397	40	365	40	357	1.5-/1	-02	16	226
						21	255	32	354	42	397	43	400	43	357			161/2	224

Experimental

Procedure.—A series of test-tubes were selected for uniformity of diameter and wall thickness in order to ensure equal rates of heat transfer, and the tubes were immersed in an ice-bath after 1 ml. of a solution containing $100 \ \mu g$. of glycerol per ml. had been added to each. To each was then added 1 ml. of freshly prepared 10% solution of catechol (twice sublimed) following which 4 ml. of a precooled 3:1 solution of sulfuric acid-water were added slowly with gentle agitation in order to avoid excessive premature heating. After a 5 min. period of thermal equilibration the tubes were placed simultaneously in a concentrated sulfuric acid bath of such a capacity and initial temperature that the temperature fell to about 145° when the tubes were immersed

(2) (a) S. C. Harvey and V. Higby, Arch. Biochem., 30, 14 (1951);
(b) A. G. Hovey and T. S. Hodgins, Ind. Eng. Chem., Anal. Ed., 9, 509 (1937).

erol which were not affected by separation into several tubes. On the other hand, since acrolein reacted to give the chromogen at a much faster rate than did glycerol,^{2a} the formation of acrolein from glycerol was the rate-limiting step and rate fluctuations probably involved glycerol transformations. Absorption spectra^{2a} of 6, 12 and 18 min. samples varied only in intensity, so that the steps were not a succession of different reactions or polymerizations yielding spectroscopically distinguishable molecular species. When other conditions of glycerol and sulfuric acid concentrations and of temperature obtained, essentially the same type of data was derived.

THE UNIVERSITY OF TEXAS SCHOOL OF DENTISTRY HOUSTON, TEXAS RECEIVED MARCH 27, 1951

⁽¹⁾ Department of Pharmacology, University of Utah, College of Medicine, Salt Lake City.